3.1.60 \(\int \frac {x \sin (c+d x)}{a+b x^2} \, dx\) [60]

3.1.60.1 Optimal result
3.1.60.2 Mathematica [C] (verified)
3.1.60.3 Rubi [A] (verified)
3.1.60.4 Maple [C] (verified)
3.1.60.5 Fricas [C] (verification not implemented)
3.1.60.6 Sympy [F]
3.1.60.7 Maxima [F]
3.1.60.8 Giac [F]
3.1.60.9 Mupad [F(-1)]

3.1.60.1 Optimal result

Integrand size = 17, antiderivative size = 177 \[ \int \frac {x \sin (c+d x)}{a+b x^2} \, dx=\frac {\operatorname {CosIntegral}\left (\frac {\sqrt {-a} d}{\sqrt {b}}+d x\right ) \sin \left (c-\frac {\sqrt {-a} d}{\sqrt {b}}\right )}{2 b}+\frac {\operatorname {CosIntegral}\left (\frac {\sqrt {-a} d}{\sqrt {b}}-d x\right ) \sin \left (c+\frac {\sqrt {-a} d}{\sqrt {b}}\right )}{2 b}-\frac {\cos \left (c+\frac {\sqrt {-a} d}{\sqrt {b}}\right ) \text {Si}\left (\frac {\sqrt {-a} d}{\sqrt {b}}-d x\right )}{2 b}+\frac {\cos \left (c-\frac {\sqrt {-a} d}{\sqrt {b}}\right ) \text {Si}\left (\frac {\sqrt {-a} d}{\sqrt {b}}+d x\right )}{2 b} \]

output
1/2*cos(c+d*(-a)^(1/2)/b^(1/2))*Si(d*x-d*(-a)^(1/2)/b^(1/2))/b+1/2*cos(c-d 
*(-a)^(1/2)/b^(1/2))*Si(d*x+d*(-a)^(1/2)/b^(1/2))/b+1/2*Ci(d*x+d*(-a)^(1/2 
)/b^(1/2))*sin(c-d*(-a)^(1/2)/b^(1/2))/b+1/2*Ci(-d*x+d*(-a)^(1/2)/b^(1/2)) 
*sin(c+d*(-a)^(1/2)/b^(1/2))/b
 
3.1.60.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.28 (sec) , antiderivative size = 155, normalized size of antiderivative = 0.88 \[ \int \frac {x \sin (c+d x)}{a+b x^2} \, dx=\frac {i e^{-i c-\frac {\sqrt {a} d}{\sqrt {b}}} \left (e^{\frac {2 \sqrt {a} d}{\sqrt {b}}} \operatorname {ExpIntegralEi}\left (-\frac {\sqrt {a} d}{\sqrt {b}}-i d x\right )+\operatorname {ExpIntegralEi}\left (\frac {\sqrt {a} d}{\sqrt {b}}-i d x\right )-e^{2 i c} \left (e^{\frac {2 \sqrt {a} d}{\sqrt {b}}} \operatorname {ExpIntegralEi}\left (-\frac {\sqrt {a} d}{\sqrt {b}}+i d x\right )+\operatorname {ExpIntegralEi}\left (\frac {\sqrt {a} d}{\sqrt {b}}+i d x\right )\right )\right )}{4 b} \]

input
Integrate[(x*Sin[c + d*x])/(a + b*x^2),x]
 
output
((I/4)*E^((-I)*c - (Sqrt[a]*d)/Sqrt[b])*(E^((2*Sqrt[a]*d)/Sqrt[b])*ExpInte 
gralEi[-((Sqrt[a]*d)/Sqrt[b]) - I*d*x] + ExpIntegralEi[(Sqrt[a]*d)/Sqrt[b] 
 - I*d*x] - E^((2*I)*c)*(E^((2*Sqrt[a]*d)/Sqrt[b])*ExpIntegralEi[-((Sqrt[a 
]*d)/Sqrt[b]) + I*d*x] + ExpIntegralEi[(Sqrt[a]*d)/Sqrt[b] + I*d*x])))/b
 
3.1.60.3 Rubi [A] (verified)

Time = 0.42 (sec) , antiderivative size = 177, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {3826, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x \sin (c+d x)}{a+b x^2} \, dx\)

\(\Big \downarrow \) 3826

\(\displaystyle \int \left (\frac {\sin (c+d x)}{2 \sqrt {b} \left (\sqrt {-a}+\sqrt {b} x\right )}-\frac {\sin (c+d x)}{2 \sqrt {b} \left (\sqrt {-a}-\sqrt {b} x\right )}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\sin \left (c-\frac {\sqrt {-a} d}{\sqrt {b}}\right ) \operatorname {CosIntegral}\left (x d+\frac {\sqrt {-a} d}{\sqrt {b}}\right )}{2 b}+\frac {\sin \left (\frac {\sqrt {-a} d}{\sqrt {b}}+c\right ) \operatorname {CosIntegral}\left (\frac {\sqrt {-a} d}{\sqrt {b}}-d x\right )}{2 b}-\frac {\cos \left (\frac {\sqrt {-a} d}{\sqrt {b}}+c\right ) \text {Si}\left (\frac {\sqrt {-a} d}{\sqrt {b}}-d x\right )}{2 b}+\frac {\cos \left (c-\frac {\sqrt {-a} d}{\sqrt {b}}\right ) \text {Si}\left (x d+\frac {\sqrt {-a} d}{\sqrt {b}}\right )}{2 b}\)

input
Int[(x*Sin[c + d*x])/(a + b*x^2),x]
 
output
(CosIntegral[(Sqrt[-a]*d)/Sqrt[b] + d*x]*Sin[c - (Sqrt[-a]*d)/Sqrt[b]])/(2 
*b) + (CosIntegral[(Sqrt[-a]*d)/Sqrt[b] - d*x]*Sin[c + (Sqrt[-a]*d)/Sqrt[b 
]])/(2*b) - (Cos[c + (Sqrt[-a]*d)/Sqrt[b]]*SinIntegral[(Sqrt[-a]*d)/Sqrt[b 
] - d*x])/(2*b) + (Cos[c - (Sqrt[-a]*d)/Sqrt[b]]*SinIntegral[(Sqrt[-a]*d)/ 
Sqrt[b] + d*x])/(2*b)
 

3.1.60.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3826
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*Sin[(c_.) + (d_.)*(x_)], x_Sym 
bol] :> Int[ExpandIntegrand[Sin[c + d*x], x^m*(a + b*x^n)^p, x], x] /; Free 
Q[{a, b, c, d, m}, x] && ILtQ[p, 0] && IGtQ[n, 0] && (EqQ[n, 2] || EqQ[p, - 
1]) && IntegerQ[m]
 
3.1.60.4 Maple [C] (verified)

Result contains complex when optimal does not.

Time = 0.26 (sec) , antiderivative size = 234, normalized size of antiderivative = 1.32

method result size
risch \(\frac {i {\mathrm e}^{\frac {i c b +d \sqrt {a b}}{b}} \operatorname {Ei}_{1}\left (\frac {i c b +d \sqrt {a b}-b \left (i d x +i c \right )}{b}\right )}{4 b}+\frac {i {\mathrm e}^{\frac {i c b -d \sqrt {a b}}{b}} \operatorname {Ei}_{1}\left (\frac {i c b -d \sqrt {a b}-b \left (i d x +i c \right )}{b}\right )}{4 b}-\frac {i \operatorname {Ei}_{1}\left (-\frac {i c b +d \sqrt {a b}-b \left (i d x +i c \right )}{b}\right ) {\mathrm e}^{-\frac {i c b +d \sqrt {a b}}{b}}}{4 b}-\frac {i \operatorname {Ei}_{1}\left (-\frac {i c b -d \sqrt {a b}-b \left (i d x +i c \right )}{b}\right ) {\mathrm e}^{-\frac {i c b -d \sqrt {a b}}{b}}}{4 b}\) \(234\)
derivativedivides \(\frac {-\frac {d^{2} \left (d \sqrt {-a b}+c b \right ) \left (\operatorname {Si}\left (d x +c -\frac {d \sqrt {-a b}+c b}{b}\right ) \cos \left (\frac {d \sqrt {-a b}+c b}{b}\right )+\operatorname {Ci}\left (d x +c -\frac {d \sqrt {-a b}+c b}{b}\right ) \sin \left (\frac {d \sqrt {-a b}+c b}{b}\right )\right )}{2 b^{2} \left (-\frac {d \sqrt {-a b}+c b}{b}+c \right )}+\frac {d^{2} \left (d \sqrt {-a b}-c b \right ) \left (\operatorname {Si}\left (d x +c +\frac {d \sqrt {-a b}-c b}{b}\right ) \cos \left (\frac {d \sqrt {-a b}-c b}{b}\right )-\operatorname {Ci}\left (d x +c +\frac {d \sqrt {-a b}-c b}{b}\right ) \sin \left (\frac {d \sqrt {-a b}-c b}{b}\right )\right )}{2 b^{2} \left (\frac {d \sqrt {-a b}-c b}{b}+c \right )}-d^{2} c \left (-\frac {\operatorname {Si}\left (d x +c -\frac {d \sqrt {-a b}+c b}{b}\right ) \cos \left (\frac {d \sqrt {-a b}+c b}{b}\right )+\operatorname {Ci}\left (d x +c -\frac {d \sqrt {-a b}+c b}{b}\right ) \sin \left (\frac {d \sqrt {-a b}+c b}{b}\right )}{2 b \left (-\frac {d \sqrt {-a b}+c b}{b}+c \right )}-\frac {\operatorname {Si}\left (d x +c +\frac {d \sqrt {-a b}-c b}{b}\right ) \cos \left (\frac {d \sqrt {-a b}-c b}{b}\right )-\operatorname {Ci}\left (d x +c +\frac {d \sqrt {-a b}-c b}{b}\right ) \sin \left (\frac {d \sqrt {-a b}-c b}{b}\right )}{2 b \left (\frac {d \sqrt {-a b}-c b}{b}+c \right )}\right )}{d^{2}}\) \(486\)
default \(\frac {-\frac {d^{2} \left (d \sqrt {-a b}+c b \right ) \left (\operatorname {Si}\left (d x +c -\frac {d \sqrt {-a b}+c b}{b}\right ) \cos \left (\frac {d \sqrt {-a b}+c b}{b}\right )+\operatorname {Ci}\left (d x +c -\frac {d \sqrt {-a b}+c b}{b}\right ) \sin \left (\frac {d \sqrt {-a b}+c b}{b}\right )\right )}{2 b^{2} \left (-\frac {d \sqrt {-a b}+c b}{b}+c \right )}+\frac {d^{2} \left (d \sqrt {-a b}-c b \right ) \left (\operatorname {Si}\left (d x +c +\frac {d \sqrt {-a b}-c b}{b}\right ) \cos \left (\frac {d \sqrt {-a b}-c b}{b}\right )-\operatorname {Ci}\left (d x +c +\frac {d \sqrt {-a b}-c b}{b}\right ) \sin \left (\frac {d \sqrt {-a b}-c b}{b}\right )\right )}{2 b^{2} \left (\frac {d \sqrt {-a b}-c b}{b}+c \right )}-d^{2} c \left (-\frac {\operatorname {Si}\left (d x +c -\frac {d \sqrt {-a b}+c b}{b}\right ) \cos \left (\frac {d \sqrt {-a b}+c b}{b}\right )+\operatorname {Ci}\left (d x +c -\frac {d \sqrt {-a b}+c b}{b}\right ) \sin \left (\frac {d \sqrt {-a b}+c b}{b}\right )}{2 b \left (-\frac {d \sqrt {-a b}+c b}{b}+c \right )}-\frac {\operatorname {Si}\left (d x +c +\frac {d \sqrt {-a b}-c b}{b}\right ) \cos \left (\frac {d \sqrt {-a b}-c b}{b}\right )-\operatorname {Ci}\left (d x +c +\frac {d \sqrt {-a b}-c b}{b}\right ) \sin \left (\frac {d \sqrt {-a b}-c b}{b}\right )}{2 b \left (\frac {d \sqrt {-a b}-c b}{b}+c \right )}\right )}{d^{2}}\) \(486\)

input
int(x*sin(d*x+c)/(b*x^2+a),x,method=_RETURNVERBOSE)
 
output
1/4*I/b*exp((I*c*b+d*(a*b)^(1/2))/b)*Ei(1,(I*c*b+d*(a*b)^(1/2)-b*(I*d*x+I* 
c))/b)+1/4*I/b*exp((I*c*b-d*(a*b)^(1/2))/b)*Ei(1,(I*c*b-d*(a*b)^(1/2)-b*(I 
*d*x+I*c))/b)-1/4*I/b*Ei(1,-(I*c*b+d*(a*b)^(1/2)-b*(I*d*x+I*c))/b)*exp(-(I 
*c*b+d*(a*b)^(1/2))/b)-1/4*I/b*Ei(1,-(I*c*b-d*(a*b)^(1/2)-b*(I*d*x+I*c))/b 
)*exp(-(I*c*b-d*(a*b)^(1/2))/b)
 
3.1.60.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.29 (sec) , antiderivative size = 146, normalized size of antiderivative = 0.82 \[ \int \frac {x \sin (c+d x)}{a+b x^2} \, dx=\frac {-i \, {\rm Ei}\left (i \, d x - \sqrt {\frac {a d^{2}}{b}}\right ) e^{\left (i \, c + \sqrt {\frac {a d^{2}}{b}}\right )} - i \, {\rm Ei}\left (i \, d x + \sqrt {\frac {a d^{2}}{b}}\right ) e^{\left (i \, c - \sqrt {\frac {a d^{2}}{b}}\right )} + i \, {\rm Ei}\left (-i \, d x - \sqrt {\frac {a d^{2}}{b}}\right ) e^{\left (-i \, c + \sqrt {\frac {a d^{2}}{b}}\right )} + i \, {\rm Ei}\left (-i \, d x + \sqrt {\frac {a d^{2}}{b}}\right ) e^{\left (-i \, c - \sqrt {\frac {a d^{2}}{b}}\right )}}{4 \, b} \]

input
integrate(x*sin(d*x+c)/(b*x^2+a),x, algorithm="fricas")
 
output
1/4*(-I*Ei(I*d*x - sqrt(a*d^2/b))*e^(I*c + sqrt(a*d^2/b)) - I*Ei(I*d*x + s 
qrt(a*d^2/b))*e^(I*c - sqrt(a*d^2/b)) + I*Ei(-I*d*x - sqrt(a*d^2/b))*e^(-I 
*c + sqrt(a*d^2/b)) + I*Ei(-I*d*x + sqrt(a*d^2/b))*e^(-I*c - sqrt(a*d^2/b) 
))/b
 
3.1.60.6 Sympy [F]

\[ \int \frac {x \sin (c+d x)}{a+b x^2} \, dx=\int \frac {x \sin {\left (c + d x \right )}}{a + b x^{2}}\, dx \]

input
integrate(x*sin(d*x+c)/(b*x**2+a),x)
 
output
Integral(x*sin(c + d*x)/(a + b*x**2), x)
 
3.1.60.7 Maxima [F]

\[ \int \frac {x \sin (c+d x)}{a+b x^2} \, dx=\int { \frac {x \sin \left (d x + c\right )}{b x^{2} + a} \,d x } \]

input
integrate(x*sin(d*x+c)/(b*x^2+a),x, algorithm="maxima")
 
output
-1/2*((cos(c)^2 + sin(c)^2)*x*cos(d*x + c) + (x*cos(d*x + c)^2*cos(c) + x* 
cos(c)*sin(d*x + c)^2)*cos(d*x + 2*c) + 2*(((b*cos(c)^2 + b*sin(c)^2)*d*x^ 
2 + (a*cos(c)^2 + a*sin(c)^2)*d)*cos(d*x + c)^2 + ((b*cos(c)^2 + b*sin(c)^ 
2)*d*x^2 + (a*cos(c)^2 + a*sin(c)^2)*d)*sin(d*x + c)^2)*integrate(1/2*(b*x 
^2 - a)*cos(d*x + c)/(b^2*d*x^4 + 2*a*b*d*x^2 + a^2*d), x) + 2*(((b*cos(c) 
^2 + b*sin(c)^2)*d*x^2 + (a*cos(c)^2 + a*sin(c)^2)*d)*cos(d*x + c)^2 + ((b 
*cos(c)^2 + b*sin(c)^2)*d*x^2 + (a*cos(c)^2 + a*sin(c)^2)*d)*sin(d*x + c)^ 
2)*integrate(1/2*(b*x^2 - a)*cos(d*x + c)/((b^2*d*x^4 + 2*a*b*d*x^2 + a^2* 
d)*cos(d*x + c)^2 + (b^2*d*x^4 + 2*a*b*d*x^2 + a^2*d)*sin(d*x + c)^2), x) 
+ (x*cos(d*x + c)^2*sin(c) + x*sin(d*x + c)^2*sin(c))*sin(d*x + 2*c))/(((b 
*cos(c)^2 + b*sin(c)^2)*d*x^2 + (a*cos(c)^2 + a*sin(c)^2)*d)*cos(d*x + c)^ 
2 + ((b*cos(c)^2 + b*sin(c)^2)*d*x^2 + (a*cos(c)^2 + a*sin(c)^2)*d)*sin(d* 
x + c)^2)
 
3.1.60.8 Giac [F]

\[ \int \frac {x \sin (c+d x)}{a+b x^2} \, dx=\int { \frac {x \sin \left (d x + c\right )}{b x^{2} + a} \,d x } \]

input
integrate(x*sin(d*x+c)/(b*x^2+a),x, algorithm="giac")
 
output
integrate(x*sin(d*x + c)/(b*x^2 + a), x)
 
3.1.60.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x \sin (c+d x)}{a+b x^2} \, dx=\int \frac {x\,\sin \left (c+d\,x\right )}{b\,x^2+a} \,d x \]

input
int((x*sin(c + d*x))/(a + b*x^2),x)
 
output
int((x*sin(c + d*x))/(a + b*x^2), x)